Shading

SURFACE RENDERING METHODS

Contents

- □ Today we will start to look at rendering methods used in computer graphics
 - Flat surface rendering
 - Gouraud surface rendering
 - Phong surface rendering

No Surface Rendering Vs Surface Rendering

Object Rendering

With Surface Rendering

Surface Rendering: Shading

- Determine a Color for Each Filled Pixel
- How to Choose a Color for Each Filled Pixel
 - Each illumination calculation for a ray from the eyepoint through the view plane provides a radiance sample

Shading

□ Surface rendering means *a procedure for applying a lighting model to obtain* pixel intensities for all the projected surface positions in a scene.

A surface-rendering algorithm uses the intensity calculations from an illumination model to determine the light intensity for all projected pixel positions for the various surfaces in a scene.

□ Surface rendering can be performed by applying the illumination model to every visible surface point

Shading?

- After triangle is rasterized (converted to pixels)
 - Per-vertex lighting calculation means color at vertices is accurate, known (red dots)
- Shading: Graphics hardware figures out color of interior pixels (blue dots)
- How? Assume linear change => interpolate

Shading

Shading Methods

- Ray Casting
 - Polygon Shading
- Ray Tracing

Radiosity

Ray Casting

- Simplest Shading Approach
 - Perform independent lighting calculation for every pixel

$$I = I_E + K_A I_{AL} + \sum_i (K_D (N \cdot L_i) I_i + K_S (\mathbf{V} \cdot \mathbf{R}_i)^n I_i)$$

Polygon Shading

- Can Take Advantage of Spatial Coherence
 - Illumination calculations for pixels covered by same primitive are related to each other

$$I = I_E + K_A I_{AL} + \sum_i (K_D (N \cdot L_i) I_i + K_S (\mathbf{V} \cdot \mathbf{R}_i)^n I_i)$$

Flat Shading

- Simplest method, same color is assigned to all surface positions
- One Illumination Calculation per Polygon

Assign all pixels inside each polygon the same color

Illumination at a single point (usually center) on the surface is calculated and used for the entire surface.

is calculated and used for the entire surface

Flat Surface Rendering

- Assumptions For each surface
 - Light source at infinity $\vec{n} \cdot \vec{l}$ is constant
 - Viewer at infinity $\vec{n} \cdot \vec{v}$ is constant
 - The polygon represents the actual surface being modeled

$$I = I_E + K_A I_{AL} + \sum_{i} (K_D (N \cdot L_i) I_i + K_S (\mathbf{V} \cdot \mathbf{R}_i)^n I_i)$$

Flat Surface Rendering

- Ok if:
 - Object consists of planar faces, and
 - Light sources are far away, and
 - Eye point is far away,
- or
 - Polygons are about a pixel in size.

- Surface rendering is extremely fast, but can be unrealistic
 - Highlights not visible,
 - Facetted appearance, increased by Mach banding effect.

No Surface Rendering Vs Flat Surface Rendering

No Surface Rendering

Flat Surface Rendering

Flat shading drawbacks

- □ The human visual system enhances edges
- We see stripes (known as Mach Bands) along edges
- Much like a sharpening convolution!
- How to avoid?

Overcoming Flat Shading Limitations

□ Just add lots and lots of polygons – however, this is SLOW!

- Developed in the 1970s by Henri Gouraud
- Worked at the University of Utah along with Ivan Sutherland and David Evans
- Often also called intensity- interpolation surface rendering

Intensity levels are calculated at each vertex and interpolated across the surface

- Smooth Surface are
 - Represented by polygonal mesh with a normal at each vertex

- One Lighting Calculation per Vertex
 - Assign pixels inside polygon by interpolating/lerping colors computed at vertices

$$I = I_E + K_A I_{AL} + \sum_i (K_D (N \cdot L_i) I_i + K_S (\mathbf{V} \cdot \mathbf{R}_i)^n I_i)$$

- □ To render a polygon, Gouraud surface rendering proceeds as follows:
 - 1. Determine the average unit **normal** vector **at each vertex** of the polygon
 - 2. Apply an illumination model at each polygon vertex to obtain the light intensity at that position
 - 3. Linearly interpolate the vertex intensities over the projected area of the polygon

 $lue{}$ The average unit normal vector at V is given as:

$$N_{v} = \frac{N_{1} + N_{2} + N_{3} + N_{4}}{\left| N_{1} + N_{2} + N_{3} + N_{4} \right|}$$

or more generally:

$$N_{v} = \frac{\sum_{i=1}^{n} N_{i}}{\left|\sum_{i=1}^{n} N_{i}\right|}$$

Bilinearly Interpolate Colors at Vertices Down and Across Scan Lines

Illumination values are bilinearly interpolated across each scan-line

$$I_A = \frac{y_A - y_2}{y_1 - y_2} I_1 + \frac{y_1 - y_A}{y_1 - y_2} I_2$$

$$I_B = \frac{y_B - y_2}{y_3 - y_2} I_3 + \frac{y_3 - y_B}{y_3 - y_2} I_2$$

$$I_{p} = \frac{x_{B} - x_{p}}{x_{B} - x_{A}} I_{A} + \frac{x_{p} - x_{A}}{x_{B} - x_{A}} I_{B}$$

An Example

Flat Vs Gouraud Rendering

Gouraud Surface Rendering

Much better result for curved surfaces

Gouraud Shading - Drawbacks

- Polygon edges are still visible
- □ Brightness is modelled as a linear function, but that's not really accurate
- Real highlights are small and bright, and drop off sharply
 - If polygons are too large, highlights get distorted and dimmed (notice the funny shape)

■ How to avoid these artifacts?

Gouraud Shading - Drawbacks

☐ It has a problem with

specular reflections

Completely miss

interpolate

- Linear interpolation still gives Mach banding
 - Silhouettes are still not smooth

- A more accurate interpolation based approach for rendering a polygon was developed by Phong Bui Tuong
- Basically the Phong surface rendering model (or normal-vector interpolation rendering) interpolates normal vectors instead of intensity values

- One Lighting Calculation per Pixel
 - Approximate surface normals for points inside polygons by bilinear interpolation of normals from vertices

- □To render a polygon, Phong surface rendering proceeds as follows:
 - 1. Determine the average unit normal vector at each vertex of the polygon
 - 2. Linearly interpolate the vertex normals over the projected area of the polygon
 - Normalize it.
 - (Interpolation of unit vectors does not preserve length).
 - 3. Apply an illumination model at positions along scan lines to calculate pixel intensities using the interpolated normal vectors

Bilinearly Interpolate Normals at Vertices Down and Across Scan Lines

Gouraud Vs Phong Surface Rendering

Gouraud Surface Rendering

Phong Surface Rendering

- Even better result for curved surfaces
- No errors at high lights
- No Mach banding
- Phong shading is much slower than Gouraud shading as the lighting model is revaluated so many times
- There are fast Phong surface rendering approaches that can be implemented iteratively
- □ Typically, implemented as part of a visible surface detection technique
- Not supported in OpenGL

Phong vs Gouraud Shading

- If a highlight does not fall on a vertex Gouraud shading may miss it completely, but Phong shading does not.
- if highlight falls on vertex, Gourad shading will spread the highlight over the polygon

Gouraud Tea Pot Example

Phong Tea Pot Example

Phong vs Gouraud Shading

Interpolative Shading artifacts

- Vertex normal does not always reflect the curvature of the surface adequately
- □ Incorrect Vertex normals no variation in shade
 - Appear less flat than actual
- □ The shading at the T-junction are different when calculated from different triangles
 - shared by right polygons and not by one on left
 - Shading discontinuity

Interpolative Shading artifacts – Mach Bands

- Common in flat shading since shading is discontinuous at edges
- Also present in Gouraud shading
 - Gradient of the shading may change suddenly
- Phong shading reduces it significantly
 - But cannot be eliminated
 - At sharp changes in surface gradient

Interpolative Shading artifacts

- □ Polygonal silhouette edge is always polygonal
- Perspective distortion interpolation is in screen space and hence foreshortening takes place
- In both cases finer polygons can help!

Orientation dependence - small rotations cause problems

Other Types of Per-pixel Shading

- Ray tracing.
 - Doesn't use Gouraud or Phong shading.
 - Each pixel uses own ray to determine color.
 - Can apply arbitrary lighting model.
 - Classical (Whitted) ray tracing uses Phong model.
 - Since ray tracing determines colors based on intersections, don't have to use polygonal geometry.
 - Thus, can potentially use exact normals, rather than interpolation.

Summary

- □ For realistic rendering of polygons we need interpolation methods to determine lighting positions
- □ Flat shading is fast, but unrealistic
- Gouraud shading is better, but does not handle specular reflections very well
- Phong shading is even better, but can be slow